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Complexity has become an issue of recent great interest (badii97). It is associated to
systems that presents involved behavior, and is hard to model using the reducionist
approach of successive subdivision, searching for ''elementary constituents'' (macau99).
While there is so far no general definition of complexity, previous works suggest that we
might expect to find the following characteristics concerning the system's behavior of a
complex system (grassberger91,crutchfield89,horgan95,poon95): (i) a behavior that is
neither completely ordered and predictable nor completely random and umpredictable; (ii)
its evolution reveals patterns in which coherent structures develop at various scales, but do
not exhibit elementary interconnections; (iii) the structures can show a hierarchical
relationship, i.e., nontrivial structures over a wide range of scales can appear. Complex
systems are very common in many natural systems such as the Rayleigh-Bérnard



convection (berge83), Belousov-Zhabotinsky reaction (muller89), neuronal activity
(rapp94), extended nonlinear optical systems (arecchi90), fluidized beds (daw95) etc.

Usually, the features that are typical of a Complex System appear in systems with many
degrees of freedom (poon95). This is the case of all the systems previously cited. What
happens, in general, is that for these systems we have a situation where a large number of
both attracting and unstable chaotic sets coexist. As a result, we can have a rich and varied
dynamical behavior, where many competing behaviors can exist. When the system is
evolving in the neighborhood of an attracting periodic set, it will exhibit an "ordered’’
behavior. This behavior changes to an apparently ‘‘non-ordered’’ behavior when the system
is evolving about the unstable sets. Thereby, the attractors themselves are responsible for
the appearance of coherent structures, while the specific characteristics of each individual
attractor, combined with its location relatively to the unstable sets are responsible for the
appearance of a hierarchy of structures.

Recent works showed that complexity can also appear in low dimensional systems
(macau99,poon95,feudel97). Both the double rotor (poon95,feudel98), which is four
dimensional, and the single rotor (macau99,feudel97), which is two dimensional, under
well established conditions, can be view as nice paradigms of a complex system, when they
are subjected to a random noise. The key to understand how the complexity thrives in low
dimensional system is the multistability phenomena. Multistability is characterized by a
large number of coexisting attractors, mainly periodic ones, for a fixed set of parameters. A
multistable system presents (feudel97) complicated basin structures with invariant chaotic
set embedded in the fractal basin boundaries. With the exception of small open
neighborhoods about the periodic attractors, the phase space is permeated by the fractal
basin boundaries the dimension of which are very close to the dimension of the phase
space. Though the trajectory can spend arbitrarily long times in the neighborhood of one of
the stable periodic behaviors, the external noise applied to the system prevents the
trajectories from settling permanently into any one of them. Thus, this system presents the
same typical behavior of a complex system.

The purpose of this article is to understand multistability and its interconnections with
complex systems. To accomplish that, we show how multistability thrives in conservative
low dimensional chaotic system and how the complexity appears in multistable system in
the presence of random noise. Furthermore we characterize low dimensional complex
systems by evidencing its fundamental dynamical properties. Therefore, in Sec. II we
describe the basic features of multistable systems, which are obtained from conservative
ones by adding a small mount of damping. In Sec. III we focus on low dimensional
complex systems and in its fundamental properties. In the last section we present general
comments.
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A conservative system, where the modulus of the determinant of the Jacobian matrix for a
map is equal to 1, presents two different types of dynamics, regular and chaotic
(lichtemberg92). The regular behavior occurs in the Kolmogorov-Arnold-Moser (KAM)
islands and in the KAM tori, which are embedded in the chaotic sea. These islands are



associated with marginally stable periodic orbits whose eigenvalues are equal to one in
absolute value. The large ones, the so-called primary islands, are surrounded by smaller
secondary islands. This scenario changes if a small amount of damping is added to such
systems (feudel97): a family of dissipative dynamical systems appears, in which the
previously marginally stable periodic orbits turn into periodic attractors whose eigenvalues
are smaller than one in absolute value. Furthermore, instead of an infinite number of
attractor, only a finite number of them can be found. Every previous KAM island is
converted into an attractor, but the number of attractors depends on the damping level and
the particular family under consideration.

There are families of typical dynamical systems where the conservative element of each
family has one or, at most just a few, primary island surrounded by secondary islands. This
family shows multistable behavior when small damping is added, but the number of
coexisting attractors is not so large. One example of this type of family is the Hènon map,
written in the following form:
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This family posses two parameters. The parameter ν, which varies between 0 and 1, is the
damping. In the limit ν=1, the two equations in (1) are decoupled, yielding the quadratic
map. In the other limit, ν=0, the map is no longer dissipative, the determinant of the
Jacobian matrix is equal to 1. The parameter � represents the bifurcation or control
parameter and it is the nonlinearity parameter. While in the case of the quadratic map there
exists only one bounded attractor over a wide range of the parameter �, there are several
coexisting attractor for values of ν close to the no damping limit ν=0, as shown in Fig. (1).
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There is other family of dynamical systems, in which the number of attractors associated
with the primary islands scales as 1/damping, 
���� when the damping tends to zero their
number tends to infinity. An example of such a family of systems is the kicked singled
rotor, which describes the time evolution of a mechanical pendulum that is being kicked at
times �%�� �&'�(�… , with a constant force ��. From the differential equation of this
mechanical system one can derive a map which is related to the state of the system just
after each successive kick (schmidt85):
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where � corresponds to the phase and 
 to the angular velocity. �� is the force parameter,
and ν is the damping parameter, measuring the energy dissipation of the system. The
parameter ν varies between 0, for a Hamiltonian situation, with no damping, and 1, in the
case of a very strong damping. The dynamics lies on the cylinder [0,2π)×ℜ . In the very
strong damping ν=1 limit, the system reduces to a one-dimensional circle map with a zero
rotation number, and it exhibits the Feigenbaum scenario to chaos (schmidt85). The
dynamics lies on the circle [0,2π).

In the no damping case (ν=0), we have the area-preserving standard map, which was
studied by Chirikov (chirikov79) and by many other authors
(greene79,schmidt80,lichtemberg92,meiss83). It has stable and unstable periodic orbits,
Kolmogorov-Arnold-Moser (KAM) surfaces, and chaotic regions. Depending on the
nonlinear parameter ��, the regions of regular motion and the regions of chaotic motion are
complexly interwoven. As the second equation of the map is also taken to be modulo 2π,
the map of the cylinder reduces now to the map of the torus [0, 2π)×[0,2π) to itself. As a
consequence, each of the periodic orbits represents, in fact, a family of overlapping periodic
orbits in which the velocity 
 differs by integer multiples of 2π. Due to the modulo 2π, all
periodic orbits of a same family are located at the same location on the thorus.
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If we now consider the no damping case but introduce a very small amount of dissipation
(ν close to zero), the symmetry in 
 is broken, and the motion again takes place on the
cylinder [0,2π)×ℜ . The periodic orbits become sinks and the chaotic Hamiltonian sets
become unstable chaotic sets embedded in the basin boundaries separating the various
sinks. The chaotic motion is hence replaced by long chaotic transients that occur before the
trajectory is eventually asymptotic to one of the sinks (feudel96). Furthermore, the
dissipation leads to a separation of the overlapping periodic orbits, which belong to a given
family, with increasing modulo of the velocities on the cylinder. However, there is a
bounded cylinder which contains all of the attractors (feudel96). This cylinder is given as



[0, 2π)×[-
PD[�
PD[], where�
PD[&��)ν , and all trajectories are eventually trapped inside this
region (feudel96). Consequently, for values of ν close to zero, there is a large, but finite,
number of coexisting periodic orbits of increasing period, as can be seen in Fig. (2).

Besides a large number of coexisting attractors and unstable chaotic sets embedded in the
basin boundaries, there are other general properties which are common to these families of
multistable dynamical systems. The multistability property is dominated by periodic
attractors, which means that the long-term behavior is regular. Just very few initial
conditions, eventually located in a set of measure almost zero, asymptote to a chaotic
behavior. Thus, chaotic attractors occur only rarely. However, even if apparently there are
no chaotic attractors present, this does not mean that chaos is absent. In fact, there are
extended chaotic sets, but unstable, lying in the basin boundaries separating the various
periodic attractors. Fig. (3) shows a typical basin of attraction for a periodic attracting orbit
of the single rotor. The black points are attracted to the specific attractor. The particular
picture shows the basin of attraction for a fixed point at 
=6π. The basins of attraction have
fractal boundaries. Feudel et al. (feudel96) calculated the �������
��
� �������� (α) which
measures the sensitivity of the final state to small changes in the initial conditions. This
exponent is typically related to the box counting dimension � of the basin boundary by
α=*-�, where * is the dimension of the state space. For damping ν=0.05, the result is
α=0.00641, which implies �=1.99359; for ν=0.02, the result is α=0.001, and �=1.999. This
means that the dimension of the basin boundaries is nearly the dimension of the state space,
and they are organized in a complexly interwoven structure, with chaotic saddles embedded
in these basin boundaries (grebogi88). Furthermore, extremely small changes in the initial
conditions may shift a trajectory from one basin to another, which means that the system
has high sensitivity to the final state. Thus, which attractor is eventually reached by a
trajectory of the system depends strongly on the initial conditions which is the typical
behavior of multistable systems. In this scenario, typical trajectories, starting with arbitrary
initial conditions, experience periods of long chaotic transients before approaching one of
the periodic attractors.
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Other general characteristic of multistable systems is the fact that most of the initial
conditions converge to periodic attractors with low periods. This happens because the
attractors with high periods have very small basins of attraction (feudel97), as can be seen
on Fig. (2) for the single rotor. Thus, high periodic orbits are difficult to detect.

8�� "��������	���!	�	������
������	��

Let we now understand how complexity arrives in a original multistable system. We
consider the single rotor family in the presence of a small amplitude noise. The noise may
prevent the trajectories from settling into any of the stable periodic behaviors
(macau99,poon95). The trajectory may come close to one of the periodic attractors, and
remain in its neighborhood for some time. During this period, the trajectory’s behavior is
governed by the periodic attractor and it is, as a consequence, ordered. However, this
ordered behavior just persists for a while, because noise will eventually move the trajectory
out of this “metastable” state into the fractal boundary region. In the neighborhood of
fractal basin boundaries, the trajectory's behavior is governed by the unstable invariant
chaotic sets that are embedded there.
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As a consequence, the trajectory experiments a chaotic transient behavior for some time,
until it approaches the same or another periodic attractor. The period of time that the
trajectory stays at the fractal boundaries corresponds to the trajectory's ``random'' behavior.
Therefore, in a single rotor with noise, a typical trajectory alternates between intervals of
random or chaotic motion and intervals of nearly periodic behavior. Figure 4 shows this
behavior for a typical trajectory. Such behavior, which stresses the fact that the system is
neither completely ordered and predictable nor completely random and unpredictable, has
also been observed experimentally in Rayleigh-Benard convection (berge83), in coupled
laser systems (arecchi90), and in fluidized beds (daw95). In Fig. (4), we also see that the
trajectory visits the neighborhoods of different attractors in a ``random'' way. It is not
possible to devise, for example, an empirical rule which allows one to forecast the sequence
of attractors that will be visited by the noisy trajectory from the knowledge of the attractors
previously visited. This is another typical characteristic of this system.



The evolution of an ensemble of initial conditions in physical space reveals coherent
structures, as can be seen in Fig. (5). This figure is obtained by following the evolution of
an ensemble of initial conditions in physical space for the single rotor with noise. We
iterate this ensemble of initial conditions � times and then verify how close each of the ���
iterated initial condition of the ensemble is from a periodic attractor. A natural number was
attributed to identify periodic attractors of the system. We consider that the ��� iterated
distance between this ��� iterated point and the periodic orbit is less than a pre-specify
limiting distance �OLP. If we determine that the ��� iterated point is in the neighborhood of a
periodic orbit, we associate to this point a positive real number. The integer part of this
number corresponds to the natural number that is attributed to the periodic orbit. The
fractional part is the distance from the point to the periodic orbit normalized by �OLP. That
positive real number is assigned to the initial condition of the ensemble corresponding to
this ��� iterated point. The picture that is showed in Fig. (5) is gotten by associating of a
“color-map” to the numbers that are attributed to each initial condition of the ensemble.
With this association we can unveil which initial conditions fall in a given coherent
structure after � iterates and which ones are ejected from the coherent structure into the
random structure. Thus, in Fig. (5), regions with the same hue indicate which initial points
will be after �� iterations in the neighborhood of the same periodic attractor, while the
saturation of each point in the region indicates how close its ��� iteration will be from the
periodic attractor. We should mention that the average number of iterations a trajectory
spends in a coherent structure decreases with the noise level.
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The appearance of coherent structures are associated with the ordered behavior of the
trajectories in the neighborhood of the periodic attractors. We can quantify the amount of
order and randomness associated with the sequence in which successive periodic attractors
are visited, as the system dynamically evolves, by using the +���������,	
��
� -+	.
������
 (kolmogorov58,sinai59). Its calculation requires the attribution of a partition to the
phase space, and it quantifies the average uncertainty per time step about the partition
element that is currently visited by the orbit. We choose a natural disjoint partition of the
phase space by associating each disjoint partition to the neighborhood of one or more of the
periodic attractors. An alphabet with ten symbols is then introduced to symbolic identify



the partitions. Consequently, the evolution of a trajectory of the system can be represented
by a sequence of the symbols of the alphabet in accordance with the sequence of the
partitions that the trajectory visits. We compute then the Kolmogorov-Sinai (KS) entropy
using the relation (adler65,cornfeld82):
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where 	&��������Q denotes a finite symbol sequence that is associated with the occurrence of
a trajectory that successively and sequentially visits the partitions corresponding to the
symbols ��������������Q, while �-	. is the joint probability for the occurrence of this sequence
	. Our calculation shows that /Q)� converges to the value � ∼ 1.65. If we recall that the +	
entropy value would be �� (10) ∼ 2.30 if the sequence were completely uncorrelated, and
zero if the sequence were periodic, we conclude that the sequence is neither predictable nor
completely unpredictable. Reference (poon95) suggested that an intermediate value of +	
indicates the existence of structure in the set of all possible sequences. We associated this
intermediate entropy result as an indication that the coherent structures associated with the
evolution of the system in the neighborhood of periodic attractors of different periodicity
(scale) do not exhibit elementary or simple interconnections.
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This complexly interwoven interconnection between the coherent or periodic and random
or chaotic structures reflects the appearance of nontrivial time scales in the system. In Fig.
(6) we have the mean escape times <%L> for some of the attractors and the average length of
the chaotic transient <τ > associated with the random structure for different values of noise
amplitude. The mean escape time is, in general, different for different attractors, for the
same noise amplitude, but it does exist a unique scale law applicable to all the attractors for
the relation between the escape time and the noise amplitude. The escape time is
exponentially distributed, though the decay rate is different for different attractors. The
average length of the chaotic transient <τ> is related to the dimension and the Lyapunov
exponents of the chaotic saddles that are embedded in the fractal basin boundary



(kantz85,hsu88,grebogi86). It is a result of the contribution of all chaotic saddles embedded
in the boundary, which, in general, individually each has a distinct time scale.

As a result of our discussion, we conclude that the single rotor with noise is a system which
presents the following characteristics: (i) its behavior is neither completely ordered and
predictable nor completely random and unpredictable; (ii) its time evolution reveals
patterns and structures over various time and spatial scales; (iii) this pattern forms
hierarchies, 
���, nontrivial structures over a wide range of scales, and the interconnection
among the structures is complicated. It means that the single rotor with noise can be
characterized as a complex system (badii97), regardless for the fact that is a system of low
(just two!) dimension. The same conclusion follows when similar arguments are applied to
other families of multistable systems.
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We have shown how conservative systems with a small amount of dissipation can
display the rich dynamical behavior that is characteristic of multistable system. In that
system, the dynamics is dominated by a large number of coexisting periodic attractors;
high-periodic attractors have very small basins of attractions; the basins of attractions of the
coexisting attractors are complexly interwoven; the estimated box dimension of the basin
boundaries are close to that of the state space. Furthermore, we have shown how
complexity can be characterized in low dimensional systems and how it thrives if a random
noise is present in multistable system.
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